Genetic changes contributing to the parallel evolution of red floral pigmentation among Ipomoea species.

نویسندگان

  • Matthew A Streisfeld
  • Mark D Rausher
چکیده

The repeated, independent evolution of phenotypic traits reflects adaptation to similar selective pressures. In some circumstances, parallel phenotypic evolution has a common genetic basis. Here, we investigate the types of genetic change responsible for the repeated evolution of red flowers among Ipomoea species. We identified three independent transitions from cyanidin- (blue/purple) to pelargonidin-type (red) anthocyanin pigments among Ipomoea species. The genetic basis for these transitions was examined using transgenics and gene expression assays. Using a literature survey to estimate the expected spectrum of mutation types capable of producing red flowers, we evaluated whether the observed distribution of mutation types differed from expectation. In these species, red floral pigmentation appears to be caused by the disruption of flux through the anthocyanin pathway at the same position. Results implicate tissue-specific regulatory changes in the same gene, which suggests the possibility that flower color evolved independently via the same genetic mechanism. Although multiple molecular mechanisms are capable of producing red flowers, we found a deviation between the distributions of observed and expected mutation types responsible for these evolutionary transitions. Regulatory mutations thus appear to be preferentially targeted during evolutionary change between species. We discuss possible explanations for this apparent bias.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Duplication in Mimulus Underlies Parallel Floral Evolution via Independent trans-Regulatory Changes

Identifying the genetic basis of parallelism reveals the means by which evolution repeats itself and shows what aspects-if any-may be predictable. The recently tetraploid luteus group of Mimulus contains five species native to central Chile, three of which have evolved extensive red floral pigmentation using at least two distinct loci . Here we show that the parallel evolution of petal lobe ant...

متن کامل

Gene loss and parallel evolution contribute to species difference in flower color.

Although the importance of regulatory and functional sequence evolution in generating species differences has been studied to some extent, much less is known about the role of other types of genomic changes, such as fluctuation in gene copy number. Here, we apply analyses of gene function and expression of anthocyanin pigment pathway genes, as well as cosegregation analyses in backcross populat...

متن کامل

Parallel evolution at multiple levels in the origin of hummingbird pollinated flowers in Ipomoea.

A transition in flower color accompanying a shift in pollinator guilds is a prominent and repeated adaptation in angiosperms. In many cases, shifts to similar pollinators are associated with similar flower-color transitions. The extent to which this parallelism at the phenotypic level results from parallel changes at the biochemical, developmental, and genetic levels, however, remains an open q...

متن کامل

Evolution of the selfing syndrome in Ipomoea

Plants that are highly selfing typically exhibit a suite of morphological traits termed a "selfing syndrome," including reduced corollas and reproductive structures, loss of corolla pigmentation, little anther-stigma separation, and a lower pollen/ovule (P/O) ratio. While it is typically assumed that these changes are adaptive, few attempts have been made to determine whether they result from t...

متن کامل

Nucleotide sequence diversity of floral pigment genes in Mexican populations of Ipomoea purpurea (morning glory) accord with a neutral model of evolution.

The common morning glory (Ipomoea purpurea) is an annual vine native to Central and Southern Mexico. The genetics of flower color polymorphisms and interactions with the biotic environment have been extensively studied in I. purpurea and in its sister species I. nil. In this study, we examine nucleotide sequence polymorphism in 11 loci, 9 of which are known to participate in a pathway that prod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The New phytologist

دوره 183 3  شماره 

صفحات  -

تاریخ انتشار 2009